
10

rovatcím MAGYAR NŐORVOSOK LAPJA • 2021; 84: 10–x

Érkezett: 2021. szeptember 15. Közlésre elfogadva: 2021. szeptember 15. Received: 15 September 2021. Accepted: 15 September 2021.

Correspondence: Iván Devosa PhD, Telephone: +36-30-380-6264, e-mail: ivan@devosa.hu

R4A: “Real Randomization
for Representative Research
Application” 1.0
An effective application to create a true
randomized subject list using a self-developed
RPR algorithm

Iván Devosa PhD1, Ágnes Maródi2, Melinda Vanya MD3, Anita Zubrecki MD4,
Tamás Grósz PhD5, Zoltan Kozinszky MD, PhD6

1Károli Gáspár University, Faculty of Pedagogy, Kecskemét, Hungary

2Institute of Education, Faculty of Arts, University of Szeged

3Ring Praxis, Switzerland

4Department of Child Psychiatry, Szent-Györgyi Albert Faculty of Medicine, University of Szeged,
Hungary

5Institute of Informatics, Aalto University, Finland

6Department of Obstetrics and Gynaecology, Danderyds Hospital, Stockholm, Sweden

Introduction

The idea of creation this software had been originated from
many reviewers notes about used methods of randomiza-
tion. They requested and missed the way how the groups
were randomly filled-up with items and how the authors
guaranteed the randomized selection? Luckily today’s infor-

matics infrastructure provides great opportunities for gen-
erating real random numbers using industry accepted stan-
dards, like Microsoft RNGCryptoServiceProvider Class,
which is the base of our solution, that was also accepted
reviewing processes.

The aim of randomization studies in biomedicine is to be
well-designed and conducted with high precision to assess

One of the essential prerequisites to conducting a representative study is the randomized subject list. Most of the gener-
ators available on the internet provide a pseudo-random data list that presents a weaker form of randomness. However,
the task of generating truly random lists generation requires a long time and depends on the current state of the comput-
er. The “R4A – Real Randomization for Representative Research Application 1.0” software (“referenceware”) developed by
the authors and available free of charge employs either the newly produced RPR algorithm (Reinitialized Pseudo
Randomization algorithm) or the widely used RNGCryptoServiceProvider Class developed by Microsoft for true random list
generation. The newly established RPR algorithm in the software operates as follows: the seed (provided at a time) is gen-
erated six times, thus starting new threads running. The multiplied pseudo-random call changes the seed due to the
imprecise timer solution in personal computers. The same thread obtains the new seed value within different time intervals
due to the activity of the other threads. This method realizes true random number generation, and its randomness is test-
ed by checking the number list. Our free application uses C# and works on any OS that implements .NET. The latest, free
version is officially available at authors’ website: http://devosa.hu/dll/r4a

Keywords: true/real randomization, software, true/pseudo-random numbers, RPR algorithm

11

Real Randomization for Representative Research Iván Devosa

the efficacy of treatments to ensure that each participant has
an equal chance of receiving a particular treatment or not
[1]. Random allocation of participants is based on proba-
bility theory, and approaching randomization in blocks or
in strata provides a balancing of the subgroups with respect
to features, which may affect the treatment prognosis. In
principle, randomization could be performed in mechani-
cal ways or by utilizing randomization programs or random
number tables. Participants will be given a unique identifier
and allocated to a trial group by an encoder before the study
or at the time of the intervention when selecting particular
outcomes of interest, which can be collected prospectively
within a certain time-period. Nowadays, we mainly see ran-
dom sequences produced by internet programs or random-
ization software in use. Internet services struggle to man-
age randomization and allocation processes and sometimes
generate faulty sequences with specific/complex random al-
location results. These services exhibit a limited potential
to build a block random array and their output format is
uncontrolled [2].

Randomization software has no restrictive abilities, and
random allocation software was constructed for parallel
group trials to avoid these flaws. However, we have found a
weak point in this workflow: in creating groups, this soft-
ware does not actually group subjects randomly to create
trial groups [2], even though it provides much better results
than online programs which use pseudo-randomization [3].
The importance of true randomization is considerable, and
without it a study cannot really be treated as representative
– as described in the “Statistics Guide for Research Grant
Applicants” [4].

In the software available today, there are two ways to
generate random numbers: true random numbers and pseu-
do-random numbers [5]. A true randomization process is
superior in biomedical research because each number on
the list is statistically independent of others. We developed
a true random list generator through a repeat provision of
the seed in pseudo-random processes using an algorithm,
which, according to our knowledge, has not been published
previously. We developed our own application using a mod-
ern programming environment: C#. The software requires
a .NET runtime environment, so it works on any OS which
implements .NET.

Technical background

Usually, software developers have to choose between (a)
the swift but less reliable pseudo-random number gener-
ator (for example, Random Class) or (b) the true random-
ized values performed with a slower method (for example,
RNGCryptoServiceProvider Class). Most computer pro-
grams are not free of charge and only generate pseudo-ran-
dom sequences based on a mathematical formula. Pseudo-
randomization requires a shorter time-period due to low
memory usage. Pseudo-random numbers are based on the
computer’s internal clock; therefore, the “random” number
can be predicted in a precisely defined time, as it is used in

most applications. In most cases, the pseudo-random num-
ber list is so similar to the true random allocation set that
it fulfills the requirements of randomization studies. In C#,
pseudo-random numbers are chosen with equal probabili-
ty from a finite set of numbers. Nevertheless, the numbers
chosen are not completely random because the mathemat-
ical algorithm that is used to select them is predictable.
Although the pseudo-random dataset is predetermined and
sometimes periodically repeated, it is sufficiently random
for practical purposes.

By contrast, true random generators use either vari-
ous physical phenomena that are expected to be random
or computational algorithms. The current implementa-
tion of Random Class is based on Donald E. Knuth’s sub-
tractive random number generator algorithm [6]. A great
deal of online and downloadable randomization soft-
ware uses a simple Random Class program; for example,
Cleanstat [7] and Minim [8] are MS-DOS-based software;
Randomization.org [9] and Randomizer.org [10] are online
services with limitations; and Random Allocation Software
[11] and Research Randomizer [12] are 32-bit applications
designed to run on Microsoft Windows 95 or later versions.
Further sources can be found in the “Directory of random-
ization software and services” [13]. However, most of them
have the limitations noted above, and, nowadays, most of
the downloadable versions are not fully compatible with 64-
bit versions of Windows.

Scientists usually analyse their data using complex appli-
cations like SPSS, R etc., with precision being a basic require-
ment in every step of the research workflow. Computers
have become much faster recently. True number generation
has therefore become available for a larger quantity of da-
ta: .NET “implements a cryptographic Random Number
Generator (RNG) using the implementation provided by
the Cryptographic Service Provider (CSP)” [14], which is
called RNGCryptoServiceProvider Class.

Our implementation of real randomiza-
tion

Our application has two methods to solve the prob-
lem of real randomization. The first one is the use of
RNGCryptoServiceProvider Class, which generates true
random numbers [15]. However, it has a strict limitation in
.NET: it uses “byte” type numbers, which means it can con-
tain a value of 0 to 255 in .NET [16]. In most cases, the num-
ber of subjects or groups could be fitted in this range, but an
increasing number of studies comprise more subjects. The
advantage of this solution is the rapid run, which is due to
the fact that RNGCryptoServiceProvider Class is initialized
only once in the application. Then the instance is called as
many times as required according to a given parameter. On
modern computers, this solution works quite fast, and its
capacity could be sufficient for smaller studies with fewer
than 255 subjects altogether.

The second method is the algorithm we have developed:
the RPR algorithm (Reinitialized Pseudo Randomization

12

Real Randomization for Representative Research Iván Devosa

algorithm). The RPR algorithm uses “16-bit integer” type
numbers, so the maximum number it can handle is 32,767.
This number of entries are considered to be large enough
for biostatistical studies and advances, therefore a slower
run is not a limitation [17].

RPR algorithm

The RPR algorithm [18] (Reinitialized Pseudo Rando-
mization algorithm) was developed by Iván Devosa to pro-
vide a solution for true randomization and to handle large
data in memory even for comprehensive studies (e.g. our
studies on students at the University of Szeged, Hungary)
[19]. The conceptualization of the algorithm relied upon
the fact that. NET initializes Random Class, which uses the
internal clock in the host computer. However, the list it gen-
erates comprises only pseudo-random numbers, and, hence,
the pattern is predictable.

Nonetheless, if Random Class is reinitialized before ev-
ery number generation in an algorithm, the numbers (ex-
cept the first one) will be unpredictable because the time of
the initiation is unknown. The time for every initialization
depends on many factors in an everyday computer (hard-
ware and software environment, current memory usage,
current processor load, etc.), so the exact reinitialization
times cannot be correctly predicted [20], a fact which can
even be used against malicious attackers [21]. The differ-
ence between the predictions and real time will be greater in
direct proportion to the number of values generated.

The implementation of the RPR algorithm
in .NET (excerpt)

From the source code (Figure 1), it can be seen that the time
of the next initialization depends on the execution time of
the conditional code (and many other factors, noted above).
The randomness is based on this “Achilles’ heel” in today’s
personal computers.

Using the application

We plan to use the graphical user interface (GUI) in mul-
tiple devices like classic “keyboard/mouse-based” PCs and
Windows 8 touch screen devices. Please note: not all func-
tions are available on every type of device and in every soft-
ware environment.
 Step 1. The application is based on the .NET Runtime

Environment. This environment is already preinstalled
on computers using Windows 8, 8.1., 10, 11. This run-
time environment is not installed on Windows 7, XP,
2000 or other operating systems, and we advise that you
download the installer and description from the official
Microsoft .NET website [23] (Figure 2).

 Step 2. The software does not
call for conventional installation.
It only requires the executable
single file, and it is ready to run
in a .NET Runtime Environment.
 Step 3. The language can be
selected (Figure 3). The default
languages for the software are
English and Hungarian, and they
are available with a single click.

Figure 1. Simplified working method for “for” loop [22]

Figure 2. Opening screen for R4A – 1.0 in Windows 10 Figure 3. Language block

13

Real Randomization for Representative Research Iván Devosa

 Step 4. Two types of rando mi-
zation are possible (Figure 4).
The default randomization is
RNGCryptoServiceProvider
Class (if checkmark on) de-
veloped by Microsoft, with a
maximum of 255 subjects or 255 groups. The advantage of
this solution is the quick run on even slow computers.
The other choice is the RPR algorithm (if checkmark off)

we have developed (R4A program version 1.0), where the
upper limit is 32,767 for subjects, which is the maximum
16-bit integer value, and 255 for groups. The advantage of
this solution is the ability to work with a huge amount of da-
ta; however, the execution time can be quite long (even over
10 seconds), mostly on slower computers with little amount
of memory.
 Step 5. The number of

subjects and the number
of groups required can be
typed in (Figure 5). The ap-
plication will automatical-
ly sort the randomly gen-
erated numbers into these
groups.

 Step 6. Click on the “GENERATE” button (Figure 6) to
start the generation pre-process (Figure 7). If the range of

available values is exceed-
ed, an error message will
be displayed.

 Step 7. The generated re-
al randomized numbers
can be saved in two for-
mats (Figure 8.). The ap-
plication will suggest
“rav” (Random Allocated
Values) as a filename, but
this can be changed to any name. As a file type, choose
ANSI text as an output for inserting the file into a docu-
ment (e.g. an article in Word) or choose the CSV (com-
ma separated values) format for database or statisti-
cal-analytical software.
If “Open” is indicated, the application will automat-

ically load the new values into Microsoft Excel (if had
been installed before) and execute the program after sav-
ing, when you click on “Save (.CSV)” or does the same
with Notepad, if you click on “Save (.TXT)”. Before exe-
cution, the application requests the user to allow running
(Figure 9).

After execution, the data is ready for further use in Excel
or other preinstalled software.

For detailed help or to see the reference to cite this ar-
ticle, click on the “About the program” button (Figure 10).

Discussion

We tested several pieces of random-
ization software, and none was suit-
ed to most of the computer environ-
ment (including .NET) and require-
ments (randomization independent
of current time, working with a large
number of subjects with output easi-
ly transferred to other software, etc.).
There is a need for real randomiza-
tion software that ensures that the
items are statistically more indepen-
dent of each other and that signifi-
cantly decreases the hazard of a bi-
as in the selection of study subjects.
There is some real randomization

Figure 5. Input data boxes

Figure 7. Randomly generated serial numbers for subjects

Figure 4. Randomization
block

Figure 8. Saving options in
R4A – 1.0

Figure 9. Allow warning to execute other program with
default filenameFigure 6. Generation pre-process with an error message

14

Real Randomization for Representative Research Iván Devosa

software available, but it does not
run properly in the .NET runtime
environment.

We developed a program that
would be a useful tool for simple
randomization. In the applica-
tion we developed, “R4A – Real
Randomization for Representative
Research Application 1.0”, we im-
plemented two real randomizing
solutions. The first solution is RNGCryptoServiceProvider
Class developed by Microsoft, where it is possible to work
with 255 values at most. The second one is our own RPR al-
gorithm, with which we can theoretically generate as many
random numbers as we need, but the computers’ RAM and
CPU speed restrict our options. We therefore decided to use
16-bit integers with a maximum value of 32,767.

The R4A – 1.0 is based on the principles published in the
“Introduction to Algorithm Analysis” [24], and it is a “ref-
erenceware” tool. It is permitted for use in scientific stud-
ies at no charge, but the current, updated descriptive article
should be cited. The title of the latest version of the article
can be found in APA (6th edition) format by clicking on the
“About the program” button. The latest, free version is offi-
cialy available at authors’ website: http://devosa.hu/dll/r4a

Further efforts will be made as we develop the block
randomization and minimization methods in the soft-
ware, including support for multiple trials and address
blinding.

RefeRences
All on-line sources were opened: 27.04.2021.
1. Schulz, Kenneth F., et al. “Assessing the quality of randomization from reports of
controlled trials published in obstetrics and Gynecology journals”. Jama 1994;
272(2): 125–128.

2. Saghaei M. Random allocation software for parallel group randomized trials
BMC Med Res Method 2004; 4: 26. Published online 2004 Nov 9.
doi: 10.1186/1471-2288-4-26.
3. Altman DG, Schulz KF, Moher D, Egger M, Davidoff F, Elbourne D, Gøtzsche Pc,
Lang T. Consort Group (Consolidated Standards Of Reporting Trials) The Revised
Consort Statement for Reporting Randomized Trials: Explanation and Elaboration.
Ann of Intern Med 2001; 134: 663–694.
4. Statistics Guide for Research Grant Applicants
http://www-users.york.ac.uk/~mb55/guide/trials.htm#whatrandom
5. Random.org – https://www.random.org/randomness
6. Microsoft Developer Network – Random Class;
https://msdn.microsoft.com/en-us/library/system.random(v=vs.110).aspx
7. Simple Statistical Software by Martin Bland
http://www-users.york.ac.uk/~mb55/soft/soft.htm
8. Stephen Evans, Patrick Royston and Simon Day;
http://www-users.york.ac.uk/~mb55/guide/minim.htm
9. Randomization.org – http://randomization.org/
10. Randomizer.org – http://randomization.org/
11. Dr. Mahmood Saghaei – Random Allocation Software;
http://mahmoodsaghaei.tripod.com/Softwares/randalloc.html
12. Geoffrey C. Urbaniak and Scott Plous – Research Randomizer;
http://www.randomizer.org/index.htm
13. Directory of randomization software and services;
http://www-users.york.ac.uk/~mb55/guide/randsery.htm
14. Microsoft Developer Network – RNGCrypto ServiceProvider Class https://msdn.
microsoft.com/en-us/library/system.security.cryptography.rngcryptoservicepro-
vider(v=vs.110).aspx
15. C# in Depth – Random numbers https://csharp indepth.com/downloads
16. Devosa I, Csallner AE. Introducton to C# 2010 programming Budapest: Digitális
Tankönyvtár, 2013.
17. Devosa I, Maródi Á, Csallner AE. Statisztikai adatok feldolgozása számítógépen
Szeged: SZTE Juhász Gyula Pedagógusképző Kar; 2011. p. 138.
18. Csallner AE, Devosa I. Introduction to Algorithms and Data Structures Szeged:
SZTE Juhász Gyula Pedagógusképző Kar; 2010. p. 57.
19. Devosa I, Kozinszky Z, Barabas K. Paradoxes in sexual risk-taking among
non-medical related university students in Szeged, Hungary. Eur J Obstet Gynecol
Repr Biol 201; 159(1): 234–236.
20. Boris Kopf and David Basin. Timing-Sensitive Information Flow Analysis for
Synchronous Systems. ETH Zurich, Switzerland; 2006.
https://boriskoepf.de/papers/esorics06.pdf
21. Boris Kopf, Panagiotis Vasilikos, Hanne Riis Nielson, Flemming Nielson. Timing
Leaks and Coarse-Grained Clocks (2019) https://boriskoepf.de/papers/csf19.pdf
22. “The for Loop” http://clinuxpro.com/the-for-loop
23. Microsoft Download Center – Microsoft .NET Framework
https://www.microsoft.com/en-us/download/confirmation.aspx?id=30653.
24. Shaffer, Clifford A. A practical introduction to data structures and algorithm
analysis. Upper Saddle River, NJ: Prentice Hall, 1997.

Figure 10. Saving
options in R4A – 1.0

