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ÖSSZEFOGLALÓ KÖZLEMÉNY MAGYAR NŐORVOSOK LAPJA

IGF system

Insulin-like growth factor (IGF) is one of growth factors that 

namely IGF-I and IGF-II [1, 2] that are interacting with their 
receptors (type I and II receptors) on cell surface. Most of 
biological actions of IGF is believed to be mediated through 

type I IGF receptor (IGF-I receptor) that structure is similar 
to insulin receptor. Most IGFs are bound to specific binding 
proteins in biological fluids and at present six distinct IGF 
binding proteins are identified namely IGFBP-1, 2, 3, 4, 5 and 
6 [3]. IGFBPs mostly inhibit but in some case enhance IGF 
action [4]. IGFBPs are proteolysed by specific proteases [5, 6] 
that indirectly modify IGF action (Figure 1).
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A magzati növekedés és az inzulinszerű növekedési faktorrendszer

Az extravillosus trophoblast (EVT) sejtek migrációját és invázióját a méhfalba az inzulinszerű növekedési faktorok (IGF-I és IGF-II) 

-

interface). Az IGF-I in vitro stimulálja az aminosav-felvételt a trophoblast sejtekbe, in vivo pedig segíti az aminosavak transzportját 

magzatba juttatását. Az anya szérum IGF-I szintje emelkedett a terhesség ideje alatt és pozitívan befolyásolja a születési súlyt,  

-

 

a magzat súlygyarapodása következik be. Tápanyaghiányos állapotokban, például placenta-diszfunkció esetén, a magzat több 
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IGF action in trophoblast cells

Implantation process consists of two cell biological events 
including attachment and invasion of trophoblast cells [7]. 
In invasion process, trophoblast cells migrate and proteolyse 
extracellular matrix of uterine endometrial cells. IGF-I 
treatment causes remarkable changes of cell shape in which 

attach strongly on fibronectin coated culture dish (Figure 2) 
[8]. Attachment assay and migration assay clearly 

demonstrate that IGF-I stimulates extravillous trophoblast 
attachment and migration. In attachment assay, IGF-I 

(Figure 3 

and 4) [8] and IGFBP-1 inhibits IGF-I action. IGF-I induced 
attachment is abolished by the addition of alpha IR3, an 
IGF-I receptor antibody (Figure 4) suggesting that IGF-I 
stimulates cell attachment through IGF-I receptor.

the bottom of inner culture well are increased by IGF-I dose 
dependently [9] and this is inhibited by the addition of 
alpha IR3 with IGF-I suggesting that IGF-I stimulates 
trophoblast migration through its receptor as well (Figure 

5). IGF-I-stimulated cell migration was also blocked by 
IGFBP-1 (Figure 5).

Placenta produces IGF-I and IGF-II and their receptors 
[10, 11] that stimulate trophoblast migration and proliferation 
in an autocrine fashion. In contrast, decidual cells produce 
large amounts of IGFBP-1 [12] that inhibits IGF action [13, 

Figure 1. IGF system
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Figure 4. Attachment of EVT by IGF-I
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Figure 2. IGF-I-induced morphological changes in EVT cells 

(scanning electron microscopy)

Figure 3. Effect of IGF-I on attachment of EVT cells

number on dish is counted after several washes.
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IGF and decidual IGFBP-1 production is important for 
controlled trophoblast invasion into uterine endometrium. If 
trophoblastic IGF production is exceeded than decidual 
IGFBP-1 production, trophoblast invades unlimitedly that is 
seen in tubal pregnancy, cervical pregnancy and placental 
increta and percreta. In contrast, over production of IGFBP-1 

in decidua compared to IGF production by placenta causes so 
called shallow implantation that is seen in abortion, placental 

local IGF and IGFBP-1 production might be involved in 
pathogenesis of abnormal pregnancy (Figure 6).

IGF and fetal growth

It has been demonstrated that maternal IGF-I increased during 
pregnancy, especially in the third trimester [15]. IGF-I is 
regulated by pituitary GH, however, maternal IGF-I is believed 
to be regulated by placental hormones such as placental GH 
variant [16] rather than pituitary GH during pregnancy that is 
responsible for increased levels of IGF-I in the maternal 
circulation. Free IGF-I levels that are unbound to IGFBPs also 
increased in the third trimester suggesting that IGF-I bioactivity 
is increased in the third trimester as well.

It is well documented that maternal levels of IGF-I are 
correlated with birth weight [17]. Recent studies have 
demonstrated that binding activities of IGFBPs in maternal 
circulation was remarkably reduced during pregnancy due 

Figure 8. Effect of neutralisation of IGF-I (A) and IGFBP-1 (B) on 3H-AIB transfer to fetus in mice

H-AIB is injected to maternal mice and fetuses 
are removed at indicated time and sera from fetuses is pooled and radioactivity is measured.
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Figure 6. Imbalance of placental IGF and decidual IGFBP-1 pro-

duction and abnormal pregnancy
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Figure 5. IGF-I-induced EVT cell migration
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to increased protease activity in the maternal circulation 
[18, 19]. When maternal IGFBPs are analyzed by ligand 
blot, the binding activities of IGFBP-3, IGFBP-2 and 
IGFBP-4 are reduced along with gestational age while 
binding activity of IGFBP-1 is increased throughout 
pregnancy (Figure 7) [20] and its level is inversely correlated 

maternal IGF-I and IGFBP-1 seem to play important role in 
fetal growth and balance of both substances may determine 
fetal growth. Maternal IGF-I can not to be transferred to 
fetal circulation through the placenta and placenta is found 

stimulates fetal growth through the placenta presumably by 
activating nutrients transfer to the fetus through placenta. 
IGF-I stimulates 3H-glycine uptake and release by cultured 
trophoblast cells and IGFBP-1 inhibits stimulatory effect of 

IGF-I dose dependently [22]. Furthermore, fetal weight is 
reduced in anti-IGF-I antiserum treated mice and transfer 
of 3H-aminoisobutyric acid (3H-AIB) to fetus that is 
injected to maternal mice is also decreased. In contrast, fetal 
weight and transfer of 3H-AIB to fetus are increased in anti-
IGFBP-1 antiserum treated mice (Figure 8) [22] suggesting 
that fetal growth and 3H-AIB transfer are accelerated by the 
immunoneutralization of IGFBP-1. Many studies indicate 
that IGFBP-1 inhibits biological action of IGF-I [13, 14, 23, 
24] and this inhibitory action of IGFBP-1 is reported to be 
achieved by inhibiting binding of IGF-I to its receptors [25, 

activating placental transport system that increases in 
nutrient supply from mother to fetus. In contrast, maternal 
IGFBP-1 inhibits fetal growth by inhibiting IGF-I access to 
its receptor on placenta thereby suppressing IGF action on 
placenta and the imbalance of maternal IGF-I and IGFBP-1 
levels might be involved in pathogenesis of fetal growth 
restriction (FGR).

As observed in maternal circulation, fetal circulating 
IGF-I is positively [27] and IGFBP-1 is negatively [28, 29] 
correlated with birth weight. Fetal IGF-I and IGFBP-1 
levels are independent from their mother and regulated by 
nutritional condition. Major production site of IGFBP-1 in 
fetus is liver and fetal rat liver cell culture system shows 
that IGFBP-1 in medium is increased in the absence of 
glucose and amino acids in the medium [30] suggesting 
that fetal IGFBP-1 is increased in poor nutritional 
condition in vitro. A part of molecular mechanism at 
transcriptional level by which nutritional factors regulate 
IGFBP-1 production is becoming clear. It is well known 
that insulin response element (IRE) and glucocorticoid 
response element (GRE) exist in promoter gene of IGFBP-1 
that inhibits and stimulates IGFBP-1 production, 
respectively [31, 32]. In addition, it become clear that 
amino acid response element exists between – 112 and –81 
bp from the cap site that includes IRE and GRE region 
[33]. Among various kind of amino acids, levels of 

Figure 9. IGF and IGFBP-1, -2 in FGR fetus in rat

blot (B).
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Figure 10. Circulating IGF-I and IGFBP-1 levels in mothers and their fetuses
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branched chain amino acids (BCAA) in cord sera are 
selectively decreased in small for gestational age (SGA) 
infants compared to those in appropriate gestational age 
(AGA) infants [34]. Deprivation of BCAA stimulates 
IGFBP-1 production in various cell culture system [35, 36] 
suggesting that deficiency of BCAA in FGR fetus might be 
involved in pathogenesis of FGR. Since regulation of pro-
tein synthesis by BCAA is mediated by mammalian target 

production might be controlled by this signaling pathway. 

only by hormones but also by nutritional factors. In vivo 

experiment also suggests nutritional regulation of IGFBP-1 
in fetus. Rat FGR fetus by maternal starvation by which 
fetal weight was reduced to 65% of control shows reduced 
IGF-I but not IGF-II levels in the circulation. In contrast, 
increased mRNA for IGFBP-1 in fetal liver is observed in 
FGR fetus while there is no difference in IGFBP-2 mRNA 
between control and FGR fetus (Figure 9) suggesting that 
increased IGFBP-1 in FGR fetus is regulated at 

reaction of fetus corresponding to decrease in maternal 
nutrients supply but may be active, self-protecting action 
to survive themselves.

Phosphoisoforms of IGFBP-1 in mother 
and fetus

Levels of IGF-I in the fetal circulation are extremely low 
while levels of IGFBP-1 are high compared to those of 
maternal circulation (Figure 10). A contradiction between 
fetal developmental speed and high levels of IGFBP-1 and 
low levels of IGF-I in fetus suggest that the mechanism in the 
fetus that can mediate fetal remarkable growth is different 
from those in maternal side. Recently phosphorylated forms 
of IGFBP-1 have been reported [38] in which three serine 
residues in the molecule can be phosphorylated [39]. 
Although non-phosphorylated and phosphorylated forms of 
IGFBP-1 have identical molecular weight, these isoforms can 
be separated based on difference of electrical charge of each 
molecule by non-denaturing gel electrophoresis and anion 
exchange chromatography [40] and one non-phosphorylated 
and four to five phosphorylated IGFBP-1 are identified. 
Phosphorylated IGFBP-1 has higher affinity for IGF-I than 
non-phosphorylated IGFBP-1 [38, 39] and interestingly, 
IGF-I-stimulated 3H-AIB uptake by cultured fibroblast cells 
derived from term placenta is inhibited by phosphorylated 
IGFBP-1 while non-phosphorylated IGFBP-1 enhances  
IGF-I action (Figure 11) [41, 42] suggesting that non-

Figure 11. Effect of IGFBP-1 phosphoisoforms on IGF-I-stimulated 
3H-AIB uptake

amniotic fluids are separated by anion exchange column of HPLC. 
Fibroblast cells derived from term placenta are cultured in the 

into cells is counted in a scintillation counter after solubilization.
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phosphorylated and phosphorylated IGFBP-1 have 
absolutely different biological effect on IGF action. Similar 
opposite effects of phosphoisoforms of IGFBP-1 on IGF-I 
action have been reported in vitro and in vivo [43, 44]. 
Phosphoisoforms of IGFBP-1 separated by anion exchange 
chromatography demonstrates that the proportion of non-
phosphorylated IGFBP-1 to total IGFBP-1 is significantly 
higher in infants than their mothers (Figure 12) although 
total amounts of IGFBP-1 are higher in infants than in 

higher in fetus compared to their mothers and it may be a 
possible explanation for remarkable growing speed observed 
in fetus even in high levels of IGFBP-1.

IGFBP-1 is phosphorylated intracellularly by various 
kinases in vivo and in vitro and phosphorylated IGFBP-1 is 
specifically increased in a catabolic state such as severe tra-
uma or diabetes mellitus [45, 46]. Only phosphorylated 
forms of IGFBP-1 are increased when rat fetal liver cells are 
cultured in the absence of amino acids (Figure 13). In hu-
man, total IGFBP-1 levels are higher in SGA fetuses than in 
AGA fetuses and phosphorylated IGFBP-1 was higher in 
SGA fetuses than in AGA fetuses although non-
phosphorylated IGFBP-1 levels are similar between two 

groups (Table 1)

in SGA fetus is presumed to be more suppressed than in 

mechanism in fetus by which fetuses restrict their growth to 
survive in malnutritional environments.
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