Fetal growth and insulin-like
growth factor system
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Insulin-like growth factors (IGF-l and IGF-II) stimulate extravillous trophoblast (EVT) cells migration and invasion into uterine wall and
one of IGF binding proteins (IGFBPs), IGFBP-1 inhibits IGF action thereby regulating EVT cells invasion negatively. Thus, appropriate
placentation is determined by the balance of IGF and IGFBP-1 in maternal-fetal interface. IGF-I stimulates amino acids uptake by
trophoblast cells in vitro and enhances the transfer of maternal amino acids to fetus in vivo. In contrast, IGFBP-1 inhibits IGF-l action
in placenta in terms of maternal amino acids transfer to fetus. In mother, circulating levels of IGF-I are increased during pregnancy
and correlate with birth weight while IGFBP-1 gradually increased throughout pregnancy and negatively correlates with birth
weight. Thus, maternal IGF-l and IGFBP-1 are tightly involved in fetal growth presumably by regulating placental nutrient transfer to
fetus. Fetal circulating levels of IGF-I are positively and IGFBP-1 are negatively correlate with birth weight as well. Cell culture and
animal experiments clearly demonstrate that fetal IGF-I and IGFBP-1 are regulated by nutritional factors where fetus inhibits
IGFBP-1 production under enough supply of nutrition from placenta and promotes its own growth. A condition that decreases
supply of these substances such as placental dysfunction, fetus produces more IGFBP-1 and inhibits IGF-I action in order to inhibit
own growth to survive. Although fetal circulating levels of IGF-1 are much lower than those in mother, different profiles of phospho-
isoforms of IGFBP-1 between mother and fetus may explain remarkable fetal growth due to high bioactivity of IGF-Iin fetus.
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A magzati novekedés és az inzulinszeri novekedési faktorrendszer

stimulaljak. Az IGF-kété fehérjék (IGFBP) koziil az IGFBP-1 gétolja az IGF-aktivitast, tehat szabalyozza, csokkenti az EVT-sejtek invazi-
6jat. Az IGF és IGFBP-1 egyensulya ezéltal elésegiti a szabdlyos placentaciot az anyai-magzati hatérfellleten (foeto-maternalis
interface). Az IGF-l in vitro stimulalja az aminosav-felvételt a trophoblast sejtekbe, in vivo pedig segiti az aminosavak transzportjat
az anyabdl a magzatba. Az IGFBP-1 ezzel szemben gatolja az IGF-I hatasat, tehdt az anyai aminosavak placentan keresztul torténé
magzatba juttatdsat. Az anya szérum IGF-l szintje emelkedett a terhesség ideje alatt és pozitivan befolyasolja a szlletési sulyt,
mig az IGFBP-1 szint fokozatosan emelkedik a terhesség sordn, és negativ 6sszefliggést mutat a sziletési sullyal. Az anyai IGF-I és
IGFBP-1 ezaltal kiemelkedd szerepet jatszik a magzati ndvekedésben, feltehetéen a tapanyagoknak a placentabdl a magzatba jut-
tatasanak szabalyozasaval. A magzati szérum IGF-I-szint noveli, mig az IGFBP-1-szint csokkenti a magzat sziiletési sulyat.
Sejtkultdrdkban és allatkisérletekben egyértelmtien kimutathatd, hogy a magzati IGF-I- és IGFBP-1-szintet taplalkozasi tényezék
szabalyozzdk. Amennyiben elegendé tapanyag érkezik a placenta irdnydbdl, a magzatban az IGFBP-1-termel6dés gatlédik, és igy
a magzat sulygyarapodasa kovetkezik be. Tapanyaghidnyos allapotokban, példaul placenta-diszfunkcié esetén, a magzat tobb
IGFBP-1-molekulat allit el6, és gatolja az IGF-I altal kozvetitett sulygyarapodast sajat tulélése érdekében. Annak ellenére, hogy a
magzati szérum IGF-I-szint jéval alacsonyabb, mint az anyai, jelentés magzati sulygyarapodas kdvetkezhet be; ez a kettejiik eltéré
IGFBP-1 foszfoizoforma profiljaval magyarazhato, és az IGF-l magas magzati bioaktivitadsdnak koszonheté.
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IGF system

Insulin-like growth factor (IGF) is one of growth factors that
has insulin like activity. There are two similar peptides,
namely IGF-T and IGF-II [1, 2] that are interacting with their
receptors (type I and II receptors) on cell surface. Most of
biological actions of IGF is believed to be mediated through

type I IGF receptor (IGF-I receptor) that structure is similar
to insulin receptor. Most IGFs are bound to specific binding
proteins in biological fluids and at present six distinct IGF
binding proteins are identified namely IGFBP-1, 2, 3, 4, 5 and
6 [3]. IGFBPs mostly inhibit but in some case enhance IGF
action [4]. IGFBPs are proteolysed by specific proteases [5, 6]
that indirectly modify IGF action (Figure 1).
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Figure 1. IGF system
IGF action in trophoblast cells

Implantation process consists of two cell biological events
including attachment and invasion of trophoblast cells [7].
In invasion process, trophoblast cells migrate and proteolyse
extracellular matrix of uterine endometrial cells. IGF-I
treatment causes remarkable changes of cell shape in which
extravillous trophoblast (EVT) cells extend lamelipodia and
attach strongly on fibronectin coated culture dish (Figure 2)
[8]. Attachment assay and migration assay clearly

Figure 2. IGF-l-induced morphological changes in EVT cells
(scanning electron microscopy)

Serum-starved EVT cells are seeded and treated for 2 hr with
serum-free medium containing no addition (A) or 10 nM IGF-I (B
and C). Scale bars, 10 pm.
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Figure 3. Effect of IGF-1 on attachment of EVT cells

EVT cells are incubated in culture dish in the presence of IGF-I (0.1-
100 nM) or 10 nM IGF-I + 10 nM IGFBP-1 for 1 hr. Then atteched cell
number on dish is counted after several washes.
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demonstrate that IGF-I stimulates extravillous trophoblast
attachment and migration. In attachment assay, IGF-I
stimulates EVT cells attachment dose dependently (Figure 3
and 4) [8] and IGFBP-1 inhibits IGF-I action. IGF-I induced
attachment is abolished by the addition of alpha IR3, an
IGF-I receptor antibody (Figure 4) suggesting that IGF-I
stimulates cell attachment through IGF-I receptor.

In migration assay, EVT cells migrated through pores on
the bottom of inner culture well are increased by IGF-I dose
dependently [9] and this is inhibited by the addition of
alpha IR3 with IGF-I suggesting that IGF-I stimulates
trophoblast migration through its receptor as well (Figure
5). IGF-I-stimulated cell migration was also blocked by
IGFBP-1 (Figure 5).

Placenta produces IGF-I and IGF-II and their receptors
[10, 11] that stimulate trophoblast migration and proliferation
in an autocrine fashion. In contrast, decidual cells produce
large amounts of IGFBP-1 [12] that inhibits IGF action [13,

*p<0,01 vs. control
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Figure 4. Attachment of EVT by IGF-I
EVT cells are incubated in culture dish in the presence of IGF-1 (0.1-

100 nM) or 10 nM IGF-1 + 10 nM alpha IR3 for 1 hr.Then attached cell
number on dish is counted after several washes.
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Figure 5. IGF-l-induced EVT cell migration

EVT cells are cultured in inner well of double chanber that has small
pores on the bottom. Cells are incubated for 24 hr in the presence
of indicated concentrations of IGF-I, 10 nM alpha IP3 or 10 nM
IGFBP-1 in the presence of 10nM IGF-I and cells passed through

pores are stained and counted
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Figure 7. Western ligand blot of sera from nonpregnant (NP)

women, pregnant women at various gestational weeks and post-
puerperium

14]. Therefore, it is suggested that the balance of placental
IGF and decidual IGFBP-1 production is important for
controlled trophoblast invasion into uterine endometrium. If
trophoblastic IGF production is exceeded than decidual
IGFBP-1 production, trophoblast invades unlimitedly that is
seen in tubal pregnancy, cervical pregnancy and placental
increta and percreta. In contrast, over production of IGFBP-1
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Figure 6. Imbalance of placental IGF and decidual IGFBP-1 pro-
duction and abnormal pregnancy

in decidua compared to IGF production by placenta causes so
called shallow implantation that is seen in abortion, placental
dysfunction and placental abruption. Thus, the imbalance of
local IGF and IGFBP-1 production might be involved in
pathogenesis of abnormal pregnancy (Figure 6).

IGF and fetal growth

It has been demonstrated that maternal IGF-I increased during
pregnancy, especially in the third trimester [15]. IGF-I is
regulated by pituitary GH, however, maternal IGF-I is believed
to be regulated by placental hormones such as placental GH
variant [16] rather than pituitary GH during pregnancy that is
responsible for increased levels of IGF-I in the maternal
circulation. Free IGF-I levels that are unbound to IGFBPs also
increased in the third trimester suggesting that IGF-I bioactivity
is increased in the third trimester as well.

It is well documented that maternal levels of IGF-I are
correlated with birth weight [17]. Recent studies have
demonstrated that binding activities of IGFBPs in maternal
circulation was remarkably reduced during pregnancy due
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Figure 8. Effect of neutralisation of IGF-1 (A) and IGFBP-1 (B) on 3H-AIB transfer to fetus in mice
Anti IGF-1 or IGFBP-1 is injected to pregnant mice between Day 14 and 17. On Day 18, 5uCi *H-AIB is injected to maternal mice and fetuses
are removed at indicated time and sera from fetuses is pooled and radioactivity is measured.

32



IGF and IGFBP-1 regulate fetal growth

A B
ng/mil *p<0,001 vs. control
@ IGF-I
600 o IGF-II
500 i
400 - IGFBP-1 mRNA
300l -——"e
200 — IGFBP-2 mRNA
100 [ * - L J - -
0 ) Control FGR
Control FGR

Figure 9. IGF and IGFBP-1, -2 in FGR fetus in rat

Maternal rats are starved between Day 16 and 19 and fetal blood is
collected at Day 20 and measured IGF-l and IGF-Il by ELISA kits (A)
and mRNA for IGFBP-1 and -2 in fetal liver is analyzed by nortern
blot (B).

to increased protease activity in the maternal circulation
[18, 19]. When maternal IGFBPs are analyzed by ligand
blot, the binding activities of IGFBP-3, IGFBP-2 and
IGFBP-4 are reduced along with gestational age while
binding activity of IGFBP-1 is increased throughout
pregnancy (Figure 7) [20] and its level is inversely correlated
with birth weight [15, 21]. These changes of IGFBPs are
quickly returned as early as day 1 of post puerperium. Thus,
maternal IGF-I and IGFBP-1 seem to play important role in
fetal growth and balance of both substances may determine
fetal growth. Maternal IGF-I can not to be transferred to
fetal circulation through the placenta and placenta is found
to contain IGF-I receptor [10, 11]. Therefore, maternal IGF-I
stimulates fetal growth through the placenta presumably by
activating nutrients transfer to the fetus through placenta.
IGF-I stimulates 3H-glycine uptake and release by cultured
trophoblast cells and IGFBP-1 inhibits stimulatory effect of
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IGF-I dose dependently [22]. Furthermore, fetal weight is
reduced in anti-IGF-I antiserum treated mice and transfer
of 3H-aminoisobutyric acid (3H-AIB) to fetus that is
injected to maternal mice is also decreased. In contrast, fetal
weight and transfer of 3H-AIB to fetus are increased in anti-
IGFBP-1 antiserum treated mice (Figure 8) [22] suggesting
that fetal growth and 3H-AIB transfer are accelerated by the
immunoneutralization of IGFBP-1. Many studies indicate
that IGFBP-1 inhibits biological action of IGF-1 [13, 14, 23,
24] and this inhibitory action of IGFBP-1 is reported to be
achieved by inhibiting binding of IGF-I to its receptors [25,
26]. Thus, maternal IGF-I stimulates fetal growth by
activating placental transport system that increases in
nutrient supply from mother to fetus. In contrast, maternal
IGFBP-1 inhibits fetal growth by inhibiting IGF-I access to
its receptor on placenta thereby suppressing IGF action on
placenta and the imbalance of maternal IGF-I and IGFBP-1
levels might be involved in pathogenesis of fetal growth
restriction (FGR).

As observed in maternal circulation, fetal circulating
IGF-I is positively [27] and IGFBP-1 is negatively [28, 29]
correlated with birth weight. Fetal IGF-I and IGFBP-1
levels are independent from their mother and regulated by
nutritional condition. Major production site of IGFBP-1 in
fetus is liver and fetal rat liver cell culture system shows
that IGFBP-1 in medium is increased in the absence of
glucose and amino acids in the medium [30] suggesting
that fetal IGFBP-1 is increased in poor nutritional
condition in vitro. A part of molecular mechanism at
transcriptional level by which nutritional factors regulate
IGFBP-1 production is becoming clear. It is well known
that insulin response element (IRE) and glucocorticoid
response element (GRE) exist in promoter gene of IGFBP-1
that inhibits and stimulates IGFBP-1 production,
respectively [31, 32]. In addition, it become clear that
amino acid response element exists between — 112 and -81
bp from the cap site that includes IRE and GRE region
[33]. Among various kind of amino acids, levels of
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Figure 10. Circulating IGF-1 and IGFBP-1 levels in mothers and their fetuses
Maternal blood and cord blood from their fetuses are collected at term delivery and IGF-I (A) and IGFBP-1 (B) are measured by ELISA

kits.
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Figure 11. Effect of IGFBP-1 phosphoisoforms on IGF-I-stimulated
3H-AIB uptake

Phosphorylated (pBP-1) and nonphosphorylated (npBP-1) in pooled
amniotic fluids are separated by anion exchange column of HPLC.
Fibroblast cells derived from term placenta are cultured in the
presence or absence of 10 nM IGFBP-1 phosphoisoforms for 24hr
and further incubate with or without 10 nM IGF-I for 3 hr followed by
incubation with 1uCi of H-AIB for 30 min. Incorporated redioactivity
into cells is counted in a scintillation counter after solubilization.

branched chain amino acids (BCAA) in cord sera are
selectively decreased in small for gestational age (SGA)
infants compared to those in appropriate gestational age
(AGA) infants [34]. Deprivation of BCAA stimulates
IGFBP-1 production in various cell culture system [35, 36]
suggesting that deficiency of BCAA in FGR fetus might be
involved in pathogenesis of FGR. Since regulation of pro-
tein synthesis by BCAA is mediated by mammalian target
of rapamycin (mTOR) signaling pathway [37], IGFBP-1
production might be controlled by this signaling pathway.
These results suggest that fetal IGFBP-1 is regulated not
only by hormones but also by nutritional factors. In vivo
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Figure 12. IGFBP-1 phosphoisoforms in mothers and their fetuses
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experiment also suggests nutritional regulation of IGFBP-1
in fetus. Rat FGR fetus by maternal starvation by which
fetal weight was reduced to 65% of control shows reduced
IGF-1I but not IGF-1I levels in the circulation. In contrast,
increased mRNA for IGFBP-1 in fetal liver is observed in
FGR fetus while there is no difference in IGFBP-2 mRNA
between control and FGR fetus (Figure 9) suggesting that
increased IGFBP-1 in FGR fetus is regulated at
transcriptional level. Thus, FGR may not be passive
reaction of fetus corresponding to decrease in maternal
nutrients supply but may be active, self-protecting action
to survive themselves.

Phosphoisoforms of IGFBP-1 in mother
and fetus

Levels of IGF-I in the fetal circulation are extremely low
while levels of IGFBP-1 are high compared to those of
maternal circulation (Figure 10). A contradiction between
fetal developmental speed and high levels of IGFBP-1 and
low levels of IGF-1 in fetus suggest that the mechanism in the
fetus that can mediate fetal remarkable growth is different
from those in maternal side. Recently phosphorylated forms
of IGFBP-1 have been reported [38] in which three serine
residues in the molecule can be phosphorylated [39].
Although non-phosphorylated and phosphorylated forms of
IGFBP-1 have identical molecular weight, these isoforms can
be separated based on difference of electrical charge of each
molecule by non-denaturing gel electrophoresis and anion
exchange chromatography [40] and one non-phosphorylated
and four to five phosphorylated IGFBP-1 are identified.
Phosphorylated IGFBP-1 has higher affinity for IGF-I than
non-phosphorylated IGFBP-1 [38, 39] and interestingly,
IGF-I-stimulated 3H-AIB uptake by cultured fibroblast cells
derived from term placenta is inhibited by phosphorylated
IGFBP-1 while non-phosphorylated IGFBP-1 enhances
IGF-1 action (Figure 11) [41, 42] suggesting that non-

@ Nonphosphorylated IGFBP-1
O Phosphorylated IGFBP-1

Blood smples are collected form mothers and their fetuses at delivery between 28 and 34 weeks gestation. Total IGFBP-1 is measured by
ELISA (A). Phosphoisoforms of IGFBP-1 are separated by anion exchange column of HPLC and IGFBP-1 in each fractions is measured by

ELISA and expresses as percent of total IGFBP-1 (B).
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Table 1. Profiles of IGFBP-1 phosphoisoforms in AGA and SGA fetuses at term

AGA (n=15) SGA (n=10)
Gestational age (wks) 37.8+1.7 38.4+2.6
Birth weight (g) 3108+198 2317+114°
Total IGFBP-1 (ng/ml) 105.5+12.3 255.5425.9p
nplGFBP-1 36.7£7.9 38.4£5.8
pIGFBP-1 (ng/ml) 68.819.4 217.1+25.6°
nplGFBP-1/ total IGFBP-1 (%) 34.8+3.9 15.0£2.6¢

Cord blood samples are collected at delivery and phosphoisoforms of IGFBP-1 are separated by anion exchange chromatography. Levels of
IGFBP-1 in each fraction are measured with an immunoradiometric assay kit

2p<0.005; ’p<0.00005; <p<0.0005 compared to corresponding values in AGA fetuses
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Figure 13. Effect of amino acids on IGFBP-1 phosphoisoforms
release by cultured rat fetal liver cells

Rat fetal liver cells are cultured in the presence or absence of amino
acids in the medium for 24 hr and medium is concentrated and
subjected to non-denaturing polycrylamide gel electrophoresis.
Nonphorylated (npBP-1) and phosporylated (pBP-1) IGFBP-1 are
then analyzed by immunoblot

phosphorylated and phosphorylated IGFBP-1 have
absolutely different biological effect on IGF action. Similar
opposite effects of phosphoisoforms of IGFBP-1 on IGF-I
action have been reported in vitro and in vivo [43, 44].
Phosphoisoforms of IGFBP-1 separated by anion exchange
chromatography demonstrates that the proportion of non-
phosphorylated IGFBP-1 to total IGFBP-1 is significantly
higher in infants than their mothers (Figure 12) although
total amounts of IGFBP-1 are higher in infants than in
mothers. This may suggest that biological activity of IGF is
higher in fetus compared to their mothers and it may be a
possible explanation for remarkable growing speed observed
in fetus even in high levels of IGFBP-1.

IGFBP-1 is phosphorylated intracellularly by various
kinases in vivo and in vitro and phosphorylated IGFBP-1 is
specifically increased in a catabolic state such as severe tra-
uma or diabetes mellitus [45, 46]. Only phosphorylated
forms of IGFBP-1 are increased when rat fetal liver cells are
cultured in the absence of amino acids (Figure 13). In hu-
man, total IGFBP-1 levels are higher in SGA fetuses than in
AGA fetuses and phosphorylated IGFBP-1 was higher in
SGA fetuses than in AGA fetuses although non-
phosphorylated IGFBP-1 levels are similar between two

groups (Table 1) [42, 47]. Thus, biological activity of IGF-I
in SGA fetus is presumed to be more suppressed than in
AGA fetus. These phenomena also support self-protecting
mechanism in fetus by which fetuses restrict their growth to
survive in malnutritional environments.
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